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Deep Learning

Introduction to supervised ML

▶ Goal: Approximate an unknown function f : X → Y from a sample
of points D = {(xi , f (xi ))}

m
i=1 with xi ∼ PX . Usually, with X = R

di .

▶ In this talk, depending on the codomain Y we can distinguish between
classification (Y = {1, 2, . . . , L}) and regression (Y = R

de ).

Tall

Short



Deep Learning

Deep learning (I)

▶ Neural networks were originally inspired by the brain’s structure.
▶ At one end, a sender neuron sends a signal to the next neuron, which

travels through the axon and reaches the dendrites of the receiver
using the synapses at the end of the axon.

▶ This communication can be represented by a graph.

S R

Image from Sivadas A and Broadie K (2020) How Does My Brain Communicate With My Body?. Front. Young Minds.
8:540970. doi: 10.3389/frym.2020.540970



Deep Learning

Deep learning (II)

▶ In the brain, there are many neurons that are interconnected in a
complex manner.

n01

n02

n03

n11

n12

n13

n21

n22

▶ These kind of graphs define the most basic neural networks, called
feedforward neural networks.



Deep Learning

A first definition

Definition 1: Let L ∈ N. A feedforward neural network is a function
φ : RN0 → R

NL defined recursively as a composition of L functions
φ(l) : RNl−1 → R

Nl , l ∈ {1, . . . , L}, as follows:

φ̄(l)(x) =

{

W (1)x + b(1) if l = 1,

W (l)φ(l−1)(x) + b(l) if l ∈ {2, . . . , L},

φ(l)(x) = ϕ(l)
(

φ̄(l)(x)
)

for l ∈ {1, . . . , L},

φ(x) = φ(L)(x),

where W (l) ∈ R
Nl×Nl−1 and b(l) ∈ R

Nl are the weights and biases of the
network, respectively, and ϕ(l) is a non-linear activation function.
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A first definition

Definition 1: Let L ∈ N. A feedforward neural network is a function
φ : RN0 → R

NL defined recursively as a composition of L functions
φ(l) : RNl−1 → R

Nl , l ∈ {1, . . . , L}, as follows:

φ̄(l)(x) =

{

W (1)x + b(1) if l = 1,

W (l)φ(l−1)(x) + b(l) if l ∈ {2, . . . , L},

φ(l)(x) = ϕ(l)
(

φ̄(l)(x)
)

for l ∈ {1, . . . , L},

φ(x) = φ(L)(x),

where W (l) ∈ R
Nl×Nl−1 and b(l) ∈ R

Nl are the weights and biases of the
network, respectively, and ϕ(l) is a non-linear activation function.

▶ For a classification problem with Y = {1, . . . ,NL}, we can use the
argmax function at the end of the network to obtain a label in Y .
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An example

▶ Take N0 = 2, N1 = 2, N2 = 1 and ϕ(l)(x) = max{0, x}. Take

W (l) =
(

w
(l)
i ,j

)

i ,j
= (i + j)i ,j and b(l) = l for all l .
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that it approximates the function f : X → Y as desired?
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Training neural networks

▶ How do we determine the weights and biases of a neural network so
that it approximates the function f : X → Y as desired?

▶ First, the weights and biases are initialized randomly.
▶ Then, the weights and biases of a neural network are iteratively

refined using gradient descent (or similar) to minimize an objective
function L called loss.

▶ For a classification problem, a common loss function is the
cross-entropy loss:

L(φ,D) = −
1

m

m
∑

i=1

NL
∑

j=1

log
exp(φ(xi )j)

∑C
k=1 exp(φ(xi )k)

✶(yi = Nj).
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Training neural networks

▶ How do we determine the weights and biases of a neural network so
that it approximates the function f : X → Y as desired?

▶ First, the weights and biases are initialized randomly.
▶ Then, the weights and biases of a neural network are iteratively

refined using gradient descent (or similar) to minimize an objective
function L called loss.

▶ For a classification problem, a common loss function is the
cross-entropy loss:

L(φ,D) = −
1

m

m
∑

i=1

NL
∑

j=1

log
exp(φ(xi )j)

∑C
k=1 exp(φ(xi )k)

✶(yi = Nj).

▶ For a regression problem, a common loss function is the mean

squared error:

L(φ,D) =
1

m

m
∑

i=1

(φ(xi )− yi )
2 .
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▶ The gradient descent algorithm is an iterative optimization
algorithm that uses the gradient of the loss function to update the
weights and biases of a neural network.
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Gradient descent (I)

▶ The gradient descent algorithm is an iterative optimization
algorithm that uses the gradient of the loss function to update the
weights and biases of a neural network.

▶ The weights and biases are updated as follows:

W (l) ←W (l) − α
∂L

∂W (l)
,

b(l) ← b(l) − α
∂L

∂b(l)
,

where α is the learning rate.

▶ The gradient of the loss function is computed using the
backpropagation algorithm.
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Gradient descent (II)
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Effectivity measures and generalization

▶ Once a neural network has been trained, we evaluate its performance.
We use a different dataset called the test set, denoted by Dtest.

▶ Effectivity measures are used to evaluate the performance of a
neural network. For classification problems, we can use accuracy:

Accuracy(D, φ) =
1

|D|

|D|
∑

i=1

✶(argmax(φ(xi )) = yi ).

Train Test

Cat          Cat         Dog         Cat          Cat          Cat           Cat

Train accuracy: 60% Test accuracy: 50%

Generalization gap = Train acc. - test acc. = 10%
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Persistent homology

C1 C2 C3 · · · Cn

Hk(C1) Hk(C2) Hk(C3) · · · Hk(Cn)

Hk Hk Hk Hk



Topological Data Analysis

Mapper

Extraction of simplicial complexes from point clouds C .
Require: D with |D| = m, filter function f : D → R

d , finite cover U = {Ui}i∈I of

Im(f ) ⊆ R
d , clustering algorithm C (e.g. DBSCAN).

Ensure: Simplicial complex SD.
1: SD ← ∅; Di ← f −1 (Ui ) for all i ∈ I

2: for all i ∈ I do

3: {C 1
i , . . . ,C

ki
i } ← C (Di ) {Apply the clustering algorithm to Di}

4: SD ← SD ∪ {C
1
i , . . . ,C

ki
i }{Add the clusters found as vertices}

5: end for

6: for all {C1, . . . ,Ct} ∈ P
(

⋃

i∈I{C
1
i , . . . ,C

ki
i }

)

{∀ subsets of found clusters}

do

7: if
⋂t

j=1 Cj ̸= ∅ then
8: SD ← SD ∪ {{C1, . . . ,Ct}} {We add the simplex {C1, . . . ,Ct}}
9: end if

10: end for

11: return SD



TDA for Deep Learning

TDA for Deep Learning



TDA for Deep Learning

Generalization and persistent homology (I)

▶ Objective: Link the generalization gap of a neural network with the
topological properties of the network and the training data. We follow
Ballester et al. (2024).1

1Rubén Ballester et al. “Predicting the generalization gap in neural networks using topological data analysis”. In:
Neurocomputing 596 (2024), p. 127787. issn: 0925-2312.
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Generalization and persistent homology (I)

▶ Objective: Link the generalization gap of a neural network with the
topological properties of the network and the training data. We follow
Ballester et al. (2024).1

▶ Hypothesis: The persistent homology of the neuron activations of a
neural network is connected to the generalization of the network.

▶ Given a neural network φ, a dataset D, and a neuron n of φ, the
activation vector of n is the vector an = (φ(x1)n, . . . , φ(xm)n),
where φn(x) is the output of the neuron n for the input x .

(0.543, 0.712, 0.343)

n

1Rubén Ballester et al. “Predicting the generalization gap in neural networks using topological data analysis”. In:
Neurocomputing 596 (2024), p. 127787. issn: 0925-2312.
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Generalization and persistent homology (II)

▶ After extracting all neuron activation vectors, we compute the
persistent homology of the point cloud given by the non-input
neurons using the dissimilarity d(n1, n2) = 1− |Corr(an1 , an2)|.
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Generalization and persistent homology (II)

▶ After extracting all neuron activation vectors, we compute the
persistent homology of the point cloud given by the non-input
neurons using the dissimilarity d(n1, n2) = 1− |Corr(an1 , an2)|.

▶ Finally, we compare persistent homology vectorizations with the
generalization of the network.

▶ Neural networks have thousands of neurons and thousands of
samples. Is it feasible to compute the persistent homology of the
activation vectors of all non-input neurons?
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Generalization and persistent homology (III)

▶ The answer is no. We need to sample the dataset and the activation
vectors of the neurons.

▶ To make the resulting vectorizations more robust, we use bootstrap

methods.
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Generalization and persistent homology (IV)

▶ We can now compare the persistent homology vectorizations with the
generalization of the network on two sets2 of different neural
networks. Image from Ballester et al. (2024).
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2Yiding Jiang et al. “Methods and Analysis of The First Competition in Predicting Generalization of Deep Learning”. In:
Proceedings of the NeurIPS 2020 Competition and Demonstration Track. Ed. by Hugo Jair Escalante and Katja Hofmann.
Vol. 133. Proceedings of Machine Learning Research. PMLR, June 2021.
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Interpretability (I)

▶ Objective: Understanding how neural networks work internally. We
follow the work done in the software TopoAct3.

3Archit Rathore et al. “TopoAct: Visually Exploring the Shape of Activations in Deep Learning”. In: Computer Graphics

Forum (2021).
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Interpretability (I)

▶ Objective: Understanding how neural networks work internally. We
follow the work done in the software TopoAct3.

▶ Idea: Understanding how data activates neurons can help us
understand how data is processed by the network, and how the
network makes decisions.

▶ Mapper graphs built from neuron activations of a fixed layer help
understanding how these activations are distributed according to the
semantics of the data (e.g. classes).

3Archit Rathore et al. “TopoAct: Visually Exploring the Shape of Activations in Deep Learning”. In: Computer Graphics

Forum (2021).
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Interpretability (II)

▶ Pipeline to compute the Mapper graph.
1. For each input in a dataset D, we compute an activation vector.

1. Choose a layer 2. Choose some neurons 3. Compute activations 
for an example

(0.315, 0.785, 0.942)

https://tdavislab.github.io/TopoAct/
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Interpretability (II)

▶ Pipeline to compute the Mapper graph.
1. For each input in a dataset D, we compute an activation vector.

1. Choose a layer 2. Choose some neurons 3. Compute activations 
for an example

(0.315, 0.785, 0.942)

2. Activation vector ax for each x ∈ D form a point cloud with m points
in R

d , where d is the number of neurons selected.
3. Generate a Mapper graph using f (ax) = ∥ax∥2, U a finite cover of

uniformly sized overlapping intervals, and clustering algorithm DBSCAN·

▶ As each node in the Mapper graph represents a cluster of activation
vectors, we can explore the images of each node and compute top
labels, average activation, etc.

▶ Live demo: https://tdavislab.github.io/TopoAct/

https://tdavislab.github.io/TopoAct/
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TDA as an input

▶ Objective: Use topological features of data as input for a network.
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Persistent homology as a layer (I)

▶ Previously, we stated that the objective of deep learning is to
approximate an unknown function f : X → Y .

▶ What does it happen if X is not Rdi ? For example, what does it
happen if X = G, the set of all finite graphs?

Is a correct 
molecular graph?
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Persistent homology as a layer (II)

▶ Idea: Compute a vectorization of persistent homology of the input
data as a layer of the network. One possible way to do this is to
follow the PersLay approach4.

4Mathieu Carriere et al. “PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological
Signatures”. In: Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. Ed. by
Silvia Chiappa and Roberto Calandra. Vol. 108. Proceedings of Machine Learning Research. PMLR, 26–28 Aug 2020,
pp. 2786–2796. url: https://proceedings.mlr.press/v108/carriere20a.html.

https://proceedings.mlr.press/v108/carriere20a.html


TDA for Deep Learning

Persistent homology as a layer (II)

▶ Idea: Compute a vectorization of persistent homology of the input
data as a layer of the network. One possible way to do this is to
follow the PersLay approach4.

▶ PersLay is a layer of the form

PersLay(D) = op ({{w(p)φ(p)}}p∈D) ,

where w : R2 → R and φ : R2 → R
di are the weight and feature

functions, respectively, and op is a permutation-invariant operation.
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Persistent homology as a layer (II)

▶ Idea: Compute a vectorization of persistent homology of the input
data as a layer of the network. One possible way to do this is to
follow the PersLay approach4.

▶ PersLay is a layer of the form

PersLay(D) = op ({{w(p)φ(p)}}p∈D) ,

where w : R2 → R and φ : R2 → R
di are the weight and feature

functions, respectively, and op is a permutation-invariant operation.

▶ Then, the classification problem is solved with the following
composition:

(MLP ◦ PersLay ◦ Dgmk)(G ).

4Mathieu Carriere et al. “PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological
Signatures”. In: Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. Ed. by
Silvia Chiappa and Roberto Calandra. Vol. 108. Proceedings of Machine Learning Research. PMLR, 26–28 Aug 2020,
pp. 2786–2796. url: https://proceedings.mlr.press/v108/carriere20a.html.

https://proceedings.mlr.press/v108/carriere20a.html
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Persistent homology as a layer (III)

Diagrams 1

w(·)φ(·)

op op op
sum
max
min
kth largest

sum
max
min
kth largest

sum
max
min
kth largest

w(·)φ(·) w(·)φ(·)

Input

op
sum
max
min
kth largest

w(·)φ(·)

Diagrams 2 Diagrams 4
Diagrams 3
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Learning filtrations (I)

▶ Can we improve the previous pipeline? What if we learn the filtration?

▶ Many graph datasets have vectors xv ∈ R
d associated to each node v .

▶ The filtration can be learned from these values using a neural
network, as in Horn et al.(2022)5.

MLP Perslay

5Max Horn et al. “Topological Graph Neural Networks”. In: International Conference on Learning Representations. 2022.
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Learning filtrations (II)

▶ One moment...

6Jacob Leygonie, Steve Oudot, and Ulrike Tillmann. “A Framework for Differential Calculus on Persistence Barcodes”. In:
Foundations of Computational Mathematics 22.4 (Aug. 2022), pp. 1069–1131. issn: 1615-3383. doi:
10.1007/s10208-021-09522-y. url: https://doi.org/10.1007/s10208-021-09522-y.

https://doi.org/10.1007/s10208-021-09522-y
https://doi.org/10.1007/s10208-021-09522-y
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Learning filtrations (II)

▶ One moment...

▶ In order to learn the weights of the MLP layer Rd → R
k , it is

necessary for the computation of persistent homology of the data to
be differentiable.

6Jacob Leygonie, Steve Oudot, and Ulrike Tillmann. “A Framework for Differential Calculus on Persistence Barcodes”. In:
Foundations of Computational Mathematics 22.4 (Aug. 2022), pp. 1069–1131. issn: 1615-3383. doi:
10.1007/s10208-021-09522-y. url: https://doi.org/10.1007/s10208-021-09522-y.

https://doi.org/10.1007/s10208-021-09522-y
https://doi.org/10.1007/s10208-021-09522-y
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Learning filtrations (II)

▶ One moment...

▶ In order to learn the weights of the MLP layer Rd → R
k , it is

necessary for the computation of persistent homology of the data to
be differentiable.

▶ It turns out that the composition of the computation of the persistent
homology and the PersLay layer is differentiable with respect to θ

under some mild conditions.

6Jacob Leygonie, Steve Oudot, and Ulrike Tillmann. “A Framework for Differential Calculus on Persistence Barcodes”. In:
Foundations of Computational Mathematics 22.4 (Aug. 2022), pp. 1069–1131. issn: 1615-3383. doi:
10.1007/s10208-021-09522-y. url: https://doi.org/10.1007/s10208-021-09522-y.

https://doi.org/10.1007/s10208-021-09522-y
https://doi.org/10.1007/s10208-021-09522-y
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Learning filtrations (II)

▶ One moment...

▶ In order to learn the weights of the MLP layer Rd → R
k , it is

necessary for the computation of persistent homology of the data to
be differentiable.

▶ It turns out that the composition of the computation of the persistent
homology and the PersLay layer is differentiable with respect to θ

under some mild conditions.

More information about persistent homology and differentiability can be
found in Leygonie et al. (2024)6.

6Jacob Leygonie, Steve Oudot, and Ulrike Tillmann. “A Framework for Differential Calculus on Persistence Barcodes”. In:
Foundations of Computational Mathematics 22.4 (Aug. 2022), pp. 1069–1131. issn: 1615-3383. doi:
10.1007/s10208-021-09522-y. url: https://doi.org/10.1007/s10208-021-09522-y.

https://doi.org/10.1007/s10208-021-09522-y
https://doi.org/10.1007/s10208-021-09522-y
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More on TDA for neural network analysis

Topological Data Analysis for Neural Network Analysis:

A Comprehensive Survey
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Conclusion

▶ Deep learning is a field of computer science focused on artificial
intelligence by using neural networks.

▶ Neural networks are artificial models inspired by the brain’s structure.

▶ Topological data analysis has been applied successfully in many areas
of deep learning, including generalization, interpretability, input
transformation, and architecture design.
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