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Introduction to supervised ML fil BARCELONA

» Goal: Approximate an unknown function f : X — Y from a sample
of points D = {(x;, f(x;))}7; with x; ~ Px. Usually, with X = R9.

» In this talk, depending on the codomain Y we can distinguish between
classification (Y = {1,2,...,L}) and regression (Y = R%).
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Deep learning (1) il BARCELONA
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» Neural networks were originally inspired by the brain’s structure.

P At one end, a sender neuron sends a signal to the next neuron, which
travels through the axon and reaches the dendrites of the receiver
using the synapses at the end of the axon.

» This communication can be represented by a graph.

Image from Sivadas A and Broadie K (2020) How Does My Brain Communicate With My Body?. Front. Young Minds.
8:540970. doi: 10.3389/frym.2020.540970
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Deep learning (II) il BARCELONA

» In the brain, there are many neurons that are interconnected in a
complex manner.

P These kind of graphs define the most basic neural networks, called
feedforward neural networks.
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A first definition il BARCELONA

Definition 1: Let L € N. A feedforward neural network is a function
¢: RNo — RN defined recursively as a composition of L functions
(b(’): RN-1 5 RN | e {1,..., L}, as follows:

» W x + p1) if I =1,
¢ (x) =
W(’)qﬁ(’_l)(x) +b0 ifre {2,...,L},

oD (x) = " (qs(ﬂ(x)) for I € {1,...,L},
¢(x) = !9 (x),

where W) ¢ RN*Ni-1 and p() € RN are the weights and biases of the
network, respectively, and go(’) is a non-linear activation function.
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A first definition I UARGELONA

Definition 1: Let L € N. A feedforward neural network is a function
¢: RNo — RN defined recursively as a composition of L functions
(b(’): RN-1 5 RN | e {1,..., L}, as follows:

iy W 1 pD if =1,
A (x) =

W(’)qﬁ(’_l)(x) +b0 ifre {2,...,L},
o (x) = ¢ (30(x)) for I € {1,...,L},

(x) = o (x),

where W) ¢ RN*Ni-1 and p() € RN are the weights and biases of the
network, respectively, and go(’) is a non-linear activation function.

» For a classification problem with Y ={1,..., N}, we can use the
argmax function at the end of the network to obtain a label in Y.
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An example
> Take Ng =2, Ny =2, No =1 and ¢()(x) = max{0, x}. Take

W = (W) = (i+);; and b = for all /.
1J

¢ (x)
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Training neural networks

» How do we determine the weights and biases of a neural network so
that it approximates the function f: X — Y as desired?
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Training neural networks
» How do we determine the weights and biases of a neural network so
that it approximates the function f: X — Y as desired?
» First, the weights and biases are initialized randomly.
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» How do we determine the weights and biases of a neural network so
that it approximates the function f: X — Y as desired?

» First, the weights and biases are initialized randomly.

P> Then, the weights and biases of a neural network are iteratively
refined using gradient descent (or similar) to minimize an objective
function L called loss.
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Training neural networks

» How do we determine the weights and biases of a neural network so
that it approximates the function f: X — Y as desired?

» First, the weights and biases are initialized randomly.

P> Then, the weights and biases of a neural network are iteratively
refined using gradient descent (or similar) to minimize an objective
function L called loss.

» For a classification problem, a common loss function is the
cross-entropy loss:

m N
e 1 xp(P09)) i, .
(@ ZZ S Lep(otiy) Y
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Training neural networks

» How do we determine the weights and biases of a neural network so
that it approximates the function f: X — Y as desired?

» First, the weights and biases are initialized randomly.

P> Then, the weights and biases of a neural network are iteratively
refined using gradient descent (or similar) to minimize an objective
function £ called loss.

» For a classification problem, a common loss function is the
cross-entropy loss:

£, ii FPOU) _y(y, — ),
® Y ep(6(0x))

1111

» For a regression problem, a common loss function is the mean
squared error:

m

£(6.D)= 3 (60%) ~ 1)’

i=1
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Gradient descent (1) fil BARCELONA

> The gradient descent algorithm is an iterative optimization
algorithm that uses the gradient of the loss function to update the
weights and biases of a neural network.
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» The gradient descent algorithm is an iterative optimization
algorithm that uses the gradient of the loss function to update the
weights and biases of a neural network.

> The weights and biases are updated as follows:

oL
O] (N _
W\ «— W a@W(’)’
oL
O] n_ 2=
b\ +— b a(‘)b(’)’

where « is the learning rate.
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Gradient descent (1) il BARCELONA

» The gradient descent algorithm is an iterative optimization
algorithm that uses the gradient of the loss function to update the
weights and biases of a neural network.

> The weights and biases are updated as follows:

oL
O] (N _
W\ «— W a@W(’)’
oL
O] n_ 2=
b\ +— b a(‘)b(’)’

where « is the learning rate.

» The gradient of the loss function is computed using the
backpropagation algorithm.
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Effectivity measures and generalization fill BARCELONA

» Once a neural network has been trained, we evaluate its performance.
We use a different dataset called the test set, denoted by Diest.
> Effectivity measures are used to evaluate the performance of a
neural network. For classification problems, we can use accuracy:
IDI
Accuracy(D, (argmax(o(x;)) = yi)-

Generalization gap = Train acc. - test acc. = 10%

Train accuracy: 60% Test accuracy: 50%

Cat Cat Dog Cat Cat Cat Cat Taf
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Persistent homology BARCELONA
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Mapper fil BARCELONA

Extraction of simplicial complexes from point clouds C.
Require: D with |D| = m, filter function f: D — R, finite cover U = {U;},, of
Im(f) € RY, clustering algorithm C (e.g. DBSCAN).
Ensure: Simplicial complex Sp.
1 Sp <« 0; D+ L (U;) forall i € 1
2 for all i € | do
s {Ch...,CF} < C(D;) {Apply the clustering algorithm to D;}
& Sp <+ SpU{CH, ..., CF}{Add the clusters found as vertices}
5. end for
e forall {G,...,G}eP (U,-E,{C,-l, ey C,’“’}) {V subsets of found clusters}
do
. if ﬂ;zl G # 0 then

8 Sp «— SpU{{G,...,C}} {We add the simplex {Cy,..., G}}
o. endif .
10. end for oy

(SEd _3‘ f‘ A
Mapper v \
1: return Sp m LA | )
R, el ® ' 20

o
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Generalization and persistent homology (1)

» Objective: Link the generalization gap of a neural network with the
topological properties of the network and the training data. We follow
Ballester et al. (2024).

LRubén Ballester et al. “Predicting the generalization gap in neural networks using topological data analysis”. In:
Neurocomputine 506 (2024) p 127787 1<sn: 0025-2312
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Generalization and persistent homology (1)

» Objective: Link the generalization gap of a neural network with the
topological properties of the network and the training data. We follow
Ballester et al. (2024).1

» Hypothesis: The persistent homology of the neuron activations of a
neural network is connected to the generalization of the network.

LRubén Ballester et al. “Predicting the generalization gap in neural networks using topological data analysis”. In:
Neurocomputine 506 (2024) p 127787 1<sn: 0025-2312
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» Objective: Link the generalization gap of a neural network with the
topological properties of the network and the training data. We follow
Ballester et al. (2024).1

» Hypothesis: The persistent homology of the neuron activations of a
neural network is connected to the generalization of the network.

» Given a neural network ¢, a dataset D, and a neuron n of ¢, the
activation vector of n is the vector a, = (¢(x1)n, .-, @(Xm)n),
where ¢,(x) is the output of the neuron n for the input x.

/\@3,\‘0%1 0.343)
/\/
/\ ‘

LRubén Ballester et al. “Predicting the generalization gap in neural networks using topological data analysis”. In:
Neurocomputine 506 (2024) p 127787 1<sn: 0025-2312
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Generalization and persistent homology (II)

> After extracting all neuron activation vectors, we compute the
persistent homology of the point cloud given by the non-input

neurons using the dissimilarity d(n1, n2) = 1 — |Corr(an,, an,)|.

Network functional

h vectors of m
graph

(Training) — \o o1 network with
components

Dataset with m . .
h non-input vertices

examples
O O O O (d(”hnl) d(nh"h))

ﬁ ....... O O O d(m,».,'fll) d(ny, ny)
O OO0
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Generalization and persistent homology (II)

> After extracting all neuron activation vectors, we compute the
persistent homology of the point cloud given by the non-input

neurons using the dissimilarity d(n1, n2) = 1 — |Corr(an,, an,)|.

Network functional

h vectors of m
graph

(Training) Neural network with
components

Dataset with m . .
h non-input vertices

examples
O O O O (d(”hnl) d("h"/z))

% ....... O O O d(nh.-,nl) d(ny, ny)
O OO0

» Finally, we compare persistent homology vectorizations with the

generalization of the network.



=] NIVERSITAT
Hl U A

Generalization and persistent homology (Il) ¥ BARCELONA

> After extracting all neuron activation vectors, we compute the
persistent homology of the point cloud given by the non-input
neurons using the dissimilarity d(n1, n2) = 1 — |Corr(an,, an,)|.

(Training) Neural network with h vectors of m Network functional

Dataset with m . .
h non-input vertices components graph
examples

O O O d(ny,ny) -+ d(ny,ny)
3 > N/ e — O O —> : . H
| O O d(np,ny) -+ d(ny,ny)
O O O

» Finally, we compare persistent homology vectorizations with the
generalization of the network.

» Neural networks have thousands of neurons and thousands of
samples. Is it feasible to compute the persistent homology of the
activation vectors of all non-input neurons?
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Generalization and persistent homology (1) ¥ BARCELONA

» The answer is no. We need to sample the dataset and the activation
vectors of the neurons.

> To make the resulting vectorizations more robust, we use bootstrap

methods.
(Training) L O Sample 1
Dataset with Neural network Activation space
atase o (s},...,8h)
Bootstrapped topological
m examples O O O 1 19t
summary vector
OO0 O
....... ) . .
O % 0O : (Fhist s b Shst)
O O O O Sample k
O — s

Oo
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> We can now compare the persistent homology vectorizations with the
generalization of the network on two sets? of different neural
networks. Image from Ballester et al. (2024).
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0.24 0.42 0.59 0.15 0.23  0.30 0.44 0.63 0.82 0.06 0.14 0.23
Mean deaths Ho SD deaths Hgp Mean deaths Hq SD deaths Hy

2Yiding Jiang et al. “Methods and Analysis of The First Competition in Predicting Generalization of Deep Learning”. In:
Proceedings of the NeurlPS 2020 Competition and Demonstration Track. Ed. by Hugo Jair Escalante and Katja Hofmann.
Vol. 133. Proceedings of Machine Learning Research. PMLR, June 2021.
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» Objective: Understanding how neural networks work internally. We
follow the work done in the software TopoAct3.

3 Archit Rathore et al. “TopoAct: Visually Exploring the Shape of Activations in Deep Learning”. In: Computer Graphics
Forum (2021).
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» Objective: Understanding how neural networks work internally. We
follow the work done in the software TopoAct3.

» lIdea: Understanding how data activates neurons can help us
understand how data is processed by the network, and how the
network makes decisions.

3 Archit Rathore et al. “TopoAct: Visually Exploring the Shape of Activations in Deep Learning”. In: Computer Graphics
Forum (2021).
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Interpretability (1)

» Objective: Understanding how neural networks work internally. We
follow the work done in the software TopoAct3.

» lIdea: Understanding how data activates neurons can help us
understand how data is processed by the network, and how the
network makes decisions.

» Mapper graphs built from neuron activations of a fixed layer help
understanding how these activations are distributed according to the
semantics of the data (e.g. classes).

3 Archit Rathore et al. “TopoAct: Visually Exploring the Shape of Activations in Deep Learning”. In: Computer Graphics
Forum (2021).
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» Pipeline to compute the Mapper graph.

1. For each input in a dataset D, we compute an activation vector.
1. Choose alayer 2. Choose some neurons 3. Compute activations

O (0.315, 0.785, 0.942)



https://tdavislab.github.io/TopoAct/

Efff UNIVERSITATo:

Interpretability (| |) il BARCELONA

» Pipeline to compute the Mapper graph.

1. For each input in a dataset D, we compute an activation vector.
1. Choose alayer 2. Choose some neurons 3. Compute activations
for an example

(0.315, 0.785, 0.942)

2. Activation vector a, for each x € D form a point cloud with m points
in RY, where d is the number of neurons selected.


https://tdavislab.github.io/TopoAct/
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Interpretability (11)

» Pipeline to compute the Mapper graph.

1. For each input in a dataset D, we compute an activation vector.
1. Choose alayer 2. Choose some neurons 3. Compute activations
for an example

(0.315, 0.785, 0.942)

2. Activation vector a, for each x € D form a point cloud with m points
in RY, where d is the number of neurons selected.

3. Generate a Mapper graph using f(ax) = ||ax|l2, U a finite cover of
uniformly sized overlapping intervals, and clustering algorithm DBSCAN-
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» Pipeline to compute the Mapper graph.

1. For each input in a dataset D, we compute an activation vector.
1. Choose alayer 2. Choose some neurons 3. Compute activations
for an example

(0.315, 0.785, 0.942)

2. Activation vector a, for each x € D form a point cloud with m points
in RY, where d is the number of neurons selected.
3. Generate a Mapper graph using f(ax) = ||ax|l2, U a finite cover of
uniformly sized overlapping intervals, and clustering algorithm DBSCAN-
» As each node in the Mapper graph represents a cluster of activation
vectors, we can explore the images of each node and compute top
labels, average activation, etc.
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» Pipeline to compute the Mapper graph.

1. For each input in a dataset D, we compute an activation vector.
1. Choose alayer 2. Choose some neurons 3. Compute activations
for an example

(0.315, 0.785, 0.942)

J4

4

2. Activation vector a, for each x € D form a point cloud with m points
in RY, where d is the number of neurons selected.
3. Generate a Mapper graph using f(ax) = ||ax|l2, U a finite cover of
uniformly sized overlapping intervals, and clustering algorithm DBSCAN-
» As each node in the Mapper graph represents a cluster of activation
vectors, we can explore the images of each node and compute top
labels, average activation, etc.
» Live demo: https://tdavislab.github.io/TopoAct/
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» Objective: Use topological features of data as input for a network.
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» Previously, we stated that the objective of deep learning is to
approximate an unknown function f: X — Y.

» What does it happen if X is not R%? For example, what does it
happen if X = G, the set of all finite graphs?

Z&E Ve 4

Is a correct
molecular graph?

Zi »——R
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» lIdea: Compute a vectorization of persistent homology of the input
data as a layer of the network. One possible way to do this is to
follow the PersLay approach?.

4Mathieu Carriere et al. “PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological
Signatures”. In: Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. Ed. by
Silvia Chiappa and Roberto Calandra. Vol. 108. Proceedings of Machine Learning Research. PMLR, 26-28 Aug 2020,
pp. 2786-2796. URL: https://proceedings.mlr.press/v108/carriere20a.html.


https://proceedings.mlr.press/v108/carriere20a.html
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» lIdea: Compute a vectorization of persistent homology of the input
data as a layer of the network. One possible way to do this is to
follow the PersLay approach?.

> PersLay is a layer of the form

PersLay(D) = op ({{w(p)é(p)}}peD)

where w: R?2 — R and ¢: R? — R are the weight and feature
functions, respectively, and op is a permutation-invariant operation.

*Mathieu Carriere et al. “PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological
Signatures”. In: Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. Ed. by
Silvia Chiappa and Roberto Calandra. Vol. 108. Proceedings of Machine Learning Research. PMLR, 26-28 Aug 2020,
pp. 2786-2796. URL: https://proceedings.mlr.press/v108/carriere20a.html.
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» lIdea: Compute a vectorization of persistent homology of the input
data as a layer of the network. One possible way to do this is to
follow the PersLay approach?.

> PersLay is a layer of the form

PersLay(D) = op ({{w(p)é(p)}}peD)

where w: R?2 — R and ¢: R? — R are the weight and feature
functions, respectively, and op is a permutation-invariant operation.

» Then, the classification problem is solved with the following

composition:
(MLP o PersLay o Dgm,)(G).

*Mathieu Carriere et al. “PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological
Signatures”. In: Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. Ed. by
Silvia Chiappa and Roberto Calandra. Vol. 108. Proceedings of Machine Learning Research. PMLR, 26-28 Aug 2020,
pp. 2786-2796. URL: https://proceedings.mlr.press/v108/carriere20a.html.
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Learning filtrations (1)

» Can we improve the previous pipeline? What if we learn the filtration?
» Many graph datasets have vectors x, € R? associated to each node v.

» The filtration can be learned from these values using a neural
network, as in Horn et aI.(2022)5.

MLP: R? — R” -

5Max Horn et al. “Topological Graph Neural Networks". In: International Conference on Learning Representations. 2022.
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» One moment...

6 Jacob Leygonie, Steve Oudot, and Ulrike Tillmann. “A Framework for Differential Calculus on Persistence Barcodes”. In:
Foundations of Computational Mathematics 22.4 (Aug. 2022), pp. 1069-1131. 1ssN: 1615-3383. DpoI:
10.1007/s10208-021-09522-y. URL: https://doi.org/10.1007/s10208-021-09522-y.


https://doi.org/10.1007/s10208-021-09522-y
https://doi.org/10.1007/s10208-021-09522-y
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Learning filtrations (II)

» One moment...

» In order to learn the weights of the MLP layer RY — RK, it is
necessary for the computation of persistent homology of the data to
be differentiable.

6 Jacob Leygonie, Steve Oudot, and Ulrike Tillmann. “A Framework for Differential Calculus on Persistence Barcodes”. In:
Foundations of Computational Mathematics 22.4 (Aug. 2022), pp. 1069-1131. 1ssN: 1615-3383. DpoI:
10.1007/s10208-021-09522-y. URL: https://doi.org/10.1007/s10208-021-09522-y.


https://doi.org/10.1007/s10208-021-09522-y
https://doi.org/10.1007/s10208-021-09522-y
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Learning filtrations (I1) il BARCELONA

» One moment...

» In order to learn the weights of the MLP layer RY — R it is
necessary for the computation of persistent homology of the data to
be differentiable.

» It turns out that the composition of the computation of the persistent
homology and the PersLay layer is differentiable with respect to 6
under some mild conditions.

6 Jacob Leygonie, Steve Oudot, and Ulrike Tillmann. “A Framework for Differential Calculus on Persistence Barcodes”. In:
Foundations of Computational Mathematics 22.4 (Aug. 2022), pp. 1069-1131. 1ssN: 1615-3383. DpoI:
10.1007/s10208-021-09522-y. URL: https://doi.org/10.1007/s10208-021-09522-y.


https://doi.org/10.1007/s10208-021-09522-y
https://doi.org/10.1007/s10208-021-09522-y
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» One moment...

» In order to learn the weights of the MLP layer RY — R it is
necessary for the computation of persistent homology of the data to
be differentiable.

» It turns out that the composition of the computation of the persistent
homology and the PersLay layer is differentiable with respect to 6
under some mild conditions.

More information about persistent homology and differentiability can be
found in Leygonie et al. (2024)°.

6 Jacob Leygonie, Steve Oudot, and Ulrike Tillmann. “A Framework for Differential Calculus on Persistence Barcodes”. In:
Foundations of Computational Mathematics 22.4 (Aug. 2022), pp. 1069-1131. 1ssN: 1615-3383. DpoI:
10.1007/s10208-021-09522-y. URL: https://doi.org/10.1007/s10208-021-09522-y.


https://doi.org/10.1007/s10208-021-09522-y
https://doi.org/10.1007/s10208-021-09522-y
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Topological Data Analysis for Neural Network Analysis:
A Comprehensive Survey
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» Deep learning is a field of computer science focused on artificial
intelligence by using neural networks.

» Neural networks are artificial models inspired by the brain's structure.

» Topological data analysis has been applied successfully in many areas
of deep learning, including generalization, interpretability, input
transformation, and architecture design.
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